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Abstract. 3D content creation from text prompts has shown remark-
able success recently. However, current text-to-3D methods often gen-
erate 3D results that do not align well with human preferences. In this
paper, we present a comprehensive framework, coined DreamReward,
to learn and improve text-to-3D models from human preference feed-
back. To begin with, we collect 25k expert comparisons based on a
systematic annotation pipeline including rating and ranking. Then, we
build Reward3D—the first general-purpose text-to-3D human prefer-
ence reward model to effectively encode human preferences. Building
upon the 3D reward model, we finally perform theoretical analysis and
present the Reward3D Feedback Learning (DreamFL), a direct tuning
algorithm to optimize the multi-view diffusion models with a redefined
scorer. Grounded by theoretical proof and extensive experiment com-
parisons, our DreamReward successfully generates high-fidelity and 3D
consistent results with significant boosts in prompt alignment with hu-
man intention. Our results demonstrate the great potential for learn-
ing from human feedback to improve text-to-3D models. Project Page:
https://jamesyjl.github.io/DreamReward/.
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1 Introduction

3D content generation has wide applications in various fields (e.g ., films, ani-
mation, game design, architectural design, and virtual reality). In recent years,
significant advancements in diffusion models have greatly propelled the develop-
ment of automated 3D generation. 3D creation can be classified into two principal
categories [43]: inference-only 3D native methods [11,16] and optimization-based
2D lifting methods [4, 5, 14, 17, 21, 33, 42, 49]. Given a text or an image, these
models are capable of generating highly intricate 3D content, some even over-
coming multi-face issues to produce high-quality and viewpoint-consistent 3D
models [23, 24, 39]. Despite rapid advancements, some researchers [39]indicate
that the 3D content generated by existing generative models struggles to align
with human preferences. Typically, this inconsistency includes but is not limited
to text-3D alignment, overall quality, and multi-view consistency.
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Recently, some works have applied reinforcement learning from human feed-
back (RLHF) to natural language processing (NLP) [32, 41] and text-to-image
generation [2, 45, 52, 56]. These algorithms typically begin by constructing and
annotating datasets based on human feedback, and then training reward mod-
els. Finally, they finetune large models (such as large language models or diffu-
sion models) using reinforcement learning techniques. This allows the fine-tuning
models to better align with human preferences.

Inspired by the aforementioned works, we recognize the effectiveness of RLHF
in improving the performance of generative models. In this work, we propose
DreamReward, which greatly boosts high-text alignment and high-quality
text-to-3D generation through human preference feedback. We propose the first
general-purpose human preference reward model for text-to-3D generation, Re-
ward3D. First, we use a clustering algorithm to extract 5k of the most repre-
sentative prompts from Cap3D [26] and generate a corresponding 3D dataset.
Subsequently, we produce 10 3D contents for each prompt and filtered them
based on quality, resulting in 2530 prompt sets, where each prompt corresponds
to 4∼10 3D contents. After collecting 25k pairs of expert comparisons, we anno-
tate the comparison and trained the Reward3D model based on it.

After constructing the annotated 3D Dataset, we train a 3D-aware scoring
model for text-to-3D generation on the constructed 3D dataset. Given the most
representative 110 prompts generated by GPTEval3D [51] and compared to the
2D scoring models ImageReward [52] and CLIP [34], which lack 3D-aware ca-
pabilities, our Reward3D can consistently align with human preference ranking
and exhibit higher distinguishability among different 3D models. With its high
alignment in human preference observed from experiments, we suggest that Re-
ward3D could serve as a promising automatic text-to-3D evaluation metric.

Building upon this, we further explore an optimization approach to improve
3D generation results—Reward3D Feedback Learning (DreamFL), which is a
direct tuning algorithm designed to optimize multi-view diffusion models using
a redefined scorer. Based on Reward3D, we carefully design the LossReward
and incorporate it into the SDS pipeline for 3D generation. Grounded by our
mathematical derivation, we find that the LossReward effectively drives the op-
timization of 3D models towards higher quality and alignment. Extensive ex-
perimental results demonstrate that 3D assets generated by DreamFL not only
achieve impressive visualization but also outperform other text-to-3D generation
methods in terms of quantitative metrics such as GPTEval3D [51], CLIP [34],
ImageReward [52], and our Reward3D.

To summarise, we make the following contributions:

– Labeled-3D dataset: We are among the first to construct and annotate
a diverse 3D dataset suitable for training and testing models aligned with
human preferences.

– Reward3D: We train the Reward3D scoring model with 3D-aware capabil-
ities, enabling it to effectively evaluate the quality of generated 3D content.

– DreamFL: We propose the Reward3D Feedback Learning (DreamFL) al-
gorithm to enhance the human preference alignment in our 3D results.
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2 Related Work

2.1 Text-to-image Generation

Diffusion models [7,13,40] combining with large-scale language encoders [34,37],
have become the leading approach in text-to-image generation. Typically, they
involve a two-step process. Initially, noise is progressively added to the original
data until it aligns with a prior distribution, such as the Gaussian distribution.
Subsequently, a neural network is employed to predict the previously added
noise, allowing the initialized samples from the prior distribution to undergo
a step-by-step reverse denoising process. Leveraging this technique, recent ad-
vancements [29, 36, 38] have demonstrated the ability to synthesize images of
exceptional quality.

2.2 Text-to-3D Generation

With the high development of text-to-image diffusion models, there has been
a surge of studies in text-to-3D generation recently. Due to limited diverse 3D
datasets [3] compared to 2D, DreamFusion [33] and SJC [47] have shifted to-
wards exploring the route of distilling score from 2D diffusion priors to optimizes
a 3D representation such as NeRF [28], and show very promising results. Such
distillation-based methods [4, 21, 33, 39, 48–50, 55, 57] have undergone rapid im-
provements in recent years. However, there still exists a significant gap in the
generation quality between 3D and 2D generation. 3D generation still lacks in
terms of generation speed, diversity of themes, and alignment with human pref-
erences. To improve the efficiency of 3D generation, DreamGaussian [5] trans-
formed the 3D representation from NeRF to gaussian-splatting [17], resulting in
high-quality generation effects. On the other hand, Shap-E [16] and Point-E [30]
achieve 3D generation in a matter of minutes through pretraining on massive
undisclosed 3D datasets. In this work, we will continue to narrow the gap between
3D and 2D generation through the DreamReward framework, which guides 3D
models towards high-quality and highly aligned generation.

2.3 Text-to-3D Generation Evaluation Metrics.

Evaluating text-to-3D generation models is a highly challenging task, requiring
both 3D awareness and understanding of textual semantics. The existing text-
to-3D evaluation methods mainly include approaches that utilize multimodal
embeddings, such as CLIP [15,34] and BLIP [18,19], as well as methods, such as
GPTEval3D [51] and T3batch [12] that employ large-scale multimodal language
models GPT-4V [1]. To obtain a fair and reliable collection of text prompts,
GPTEval3D [51] created a text-prompt generator using language instruction.
This enables us to better assess the strengths and weaknesses of different 3D
models. Our proposed Reward3D in this work will serve as a novel evaluation
model for text-to-3D, assisting users in evaluating 3D results effectively without
relying on large language models, which may incur costs. It will also provide
promising scores and rankings aligned with human preferences.
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2.4 Learning from human feedback

The alignment of large language models (LLMs) [31,44] with human preferences
is an issue that has garnered considerable attention. Reinforcement Learning
from Human Feedback (RLHF) [32,41,58] uses a strategy that leverages human
feedback with reinforcement learning policies to address this challenge. Recent
literature [2,9,46,52,53,53] has demonstrated that incorporating human feedback
enhances the performance of text-to-image models as well. ImageReward [52]
introduces a reward model based on human preferences specifically for text-to-
image tasks and puts forward a novel approach termed Reward Feedback Learn-
ing, which is designed to refine diffusion models. Meanwhile, DiffusionDPO [46]
presents a technique that aligns diffusion models with human preferences by
directly optimizing with human comparative data, an adaptation of Direct Pref-
erence Optimization (DPO) [35]. Further, DPOK [9] amalgamates policy opti-
mization with KL regularization within the framework of text-to-image diffusion
models. Despite the proven efficacy of these approaches, learning from human
feedback in the domain of text-to-3D generation still requires investigation.

3 Overall Framework

We hereby present the overall framework of our DreamReward, a novel text-to-
3D framework to achieve human preference alignment. The complete pipeline is
depicted in Figure 1. Initially, in Sec. 4, we introduce the Reward3D architecture,
which encompasses the construction of a 3D dataset (Sec. 4.1), the development
of a data annotation pipeline (Sec. 4.1), and the training of the Reward Model
(RM) (Sec. 4.2). After training the 3D-aware Reward3D model, we proceed to
delineate the core of our DreamReward framework—the Reward3D Feedback
Learning (DreamFL) in Sec. 5. Specifically, In Sec. 5.2, we first identify that
the distribution obtained by existing diffusion models for distilling 3D assets
diverges from the desired distribution at two distinct levels. Then in Sec. 5.3, we
demonstrate the efficacy of our Reward3D in bridging the gap between these two
distributions through both detailed mathematical derivation and demonstration.
More detailed implementation specifics of our algorithm can be found in our
supplementary materials.

4 Reward3D

4.1 Annotation Pipeline Design

Prompt Selection and 3D Collection. Our proposed new dataset utilizes
a diverse selection of prompts from cap3D [26], which is a re-annotation of the
large-scale 3D dataset Objaverse [6], with better alignment compared to the
original prompts in Objaverse [6]. To ensure diversity in selected prompts, we
employ a graph-based algorithm that leverages language model-based prompt
similarity. This selection yields 5000 candidate prompts, each accompanied by
4-10 sampled 3D assets generated from ashawkey/mvdream-sd2.1-diffusers [39]
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Fig. 1: The overall framework of our DreamReward. (Top) Reward3D involves
data collection, annotation, and preference learning. (Bottom) DreamFL utilizes feed-
back from Reward3D to compute RewardLoss and incorporate it into the SDS loss for
simultaneous optimization of NeRF.

Dataset Filtering. From our empirical observations, we notice that results
we generate are prone to encountering mode collapses. This is attributed to the
complexity of the selected prompts [51], leading to significant collapses of the
corresponding 3D assets under the same prompt. Therefore, prior to annotation,
we conduct a filtering process on the generated 3D dataset with a selection of
2530 prompts, each from 4-10 assets. Then we obtain 25,304 candidate pairs for
labeling.

Human Annotation Design. In the annotation process, annotators rate im-
ages on a scale of 1-6 based on text-3D alignment, overall quality, and multi-view
consistency, and rank them according to the average scores. To avoid potential
conflicts in rankings, we maintain a real-time data structure for each prompt set.
When conflicts arise, conflicting pairs are flagged, followed by secondary verifi-
cation and correction. We recruit some annotators from universities for labeling,
and additionally sought assistance from data institutions, with annotation doc-
uments showcased in the appendix.
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4.2 Reward3D Training

Similar to RM training for language model of previous works [32, 41, 58], we
formulate the preference annotations as rankings. We have 9 3D-model ranked
for the same prompt T, and get at most C2

9 comparison pairs if there are no ties
between two 3D-model. For each comparison, if xi is better and xj is worse, the
loss function can be formulated as:

loss(θ) = −E(T,xi,xj ,ci,cj)∼D [log (σ (rθ (T, xi, ci)− rθ (T, xj , cj)))] , (1)

where r represents the Reward3D model, ci and cj represent cameras.

Training Detail. We use ImageReward [52] as the backbone of our Reward3D.
We extract image and text features, combine them with cross-attention, and
use an MLP to generate a scalar for preference comparison. During the training
stage, we observe rapid convergence and consequent overfitting, which harms
its performance. To address this, we freeze some backbone transformer layers’
parameters, finding that a proper number of fixed layers can improve the model’s
performance. We train Reward3D on a single 4090 GPU (24GB) with a batch
size set to 8. We utilize the AdamW [25] optimizer with a learning rate of 1e-5
and a fixed rate set to 80%.

5 DreamFL

After training the 3D reward model, we now present DreamFL algorithm. Our
pipeline is depicted in Figure 1. Before delving into the specifics of our approach,
let’s start by revisiting the preliminaries of Score Distillation Sampling theory.

5.1 Preliminaries

Score Distillation Sampling (SDS). Score Distillation Sampling (SDS) [33],
an optimization method that distills 3D knowledge from pretrained 2D diffu-
sion models, has significantly advanced the rapid development of 3D genera-
tion [21, 33, 48, 49, 55] in recent years. Given a differentiable rendering mapping
function g(θ,c), a pretrained 2D diffusion model ϕ(xt|y) and its corresponding
noise prediction network ϵϕ(xt, t, y), SDS optimizes the parameter θ by solving:

∇θLSDS(θ) ≈ Et,ϵ,c

[
ω(t) (ϵϕ (xt, t, y)− ϵ)

∂g(θ, c)

∂θ

]
, (2)

where θ is the parameter of 3D representation and c is desired camera. To elab-
orate further, we denote qθt (xt|c) as the distribution at time t of the forward
diffusion process, initiated from the rendered image. The SDS optimization al-
gorithm described above can be regarded as

min
θ∈Θ

LSDS(θ) := Et,c

[
(σt/αt)ω(t)DKL

(
qθt (xt|c) ∥pt (xt|y)

)]
. (3)
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5.2 DreamFL

Why do SDS-generated 3D assets lack alignment? Two major challenges
arise when seeking to align 3D generation models with human preferences. (1)
the conditional distribution pt (xt|y) obtained by pre-trained diffusion models
diverges from human preference and actual user-prompt distributions [52, 53].
Consequently, 3D assets distilled from this deviant distribution inherently fail to
align with human preferences, often to an even more pronounced degree. (2)The
capability to maintain multi-view consistency acquired through score distillation
from diffusion models is profoundly limited [8, 20,22].

In recent years, many related works [2,46] have emerged in the field of text-
to-image generation to address the aforementioned problem (1). However, due
to the multi-step nature of the process, fine-tuning a diffusion model suitable for
the text-to-3D domain is challenging. The main difference lies in the timestamp,
where fine-tuning a diffusion model for generation typically requires fine-tuning
the last 20%-30% of denoising steps [52]. In contrast, text-to-image tasks of-
ten only require the last 10 steps for fine-tuning, as they use around 40 steps.
Through empirical studies, it is found that 3D generation often requires over 1000
denoising steps [10,49], meaning over 20 times the computational workload. On
the other hand, the inherent multi-view inconsistency of the SDS algorithm will
exacerbate the perceived quality of the generated 3D results among humans.
Suppose there exists a diffusion model ϕ̂ that aligns well with human prefer-
ences. However, the presence of problem (2). causes it to lack awareness of 3D,
resulting in the generated 3D assets still not meeting our desired criteria. Based
on the above analysis, we have learned that the distribution pt (xt|y), followed
by our current diffusion model, deviates significantly from the ideal distribution
prt (xt|y), where prt (xt|y) represents the target distribution aligned with human
preferences and possessing 3D awareness.

To address these challenges, our approach aims to leverage our existing distri-
bution pt (xt|y) to approximate the challenging distribution prt (xt|y). Inspired
by ProlificDreamer, which used a LoRA [54] to approximate the distribution
of NeRF, we found that approximating the predicted noise of a distribution is
sufficient to approximate the distribution itself. Therefore, we denote the noise
generated from distributions pt (xt|y) and prt (xt|y) as ϵϕ(xt, t, y) and ϵrϕ(xt, t, y),
respectively. Our goal is to approximate ϵrϕ(xt, t, y) using ϵϕ(xt, t, y), meaning to
obtain δϵ = ϵϕ(xt, t, y)− ϵrϕ(xt, t, y), which will effectively address the problem.
With this understanding, we proceed to the derivation below.

Approximate δϵ using Reward3D. First, let us rewrite Eq. 3 by replacing
pt (xt|y) with prt (xt|y).

min
θ∈Θ

LReward(θ) := Et,c

[
(σt/αt)ω(t)DKL

(
qθt (xt|c) ∥prt (xt|y)

)]
. (4)

Its gradient is approximated by

∇θLReward(θ) ≈ Et,ϵ,c

[
ω(t)

(
ϵrϕ (xt, t, y)− ϵ

) ∂g(θ, c)
∂θ

]
. (5)
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However, as mentioned above, obtaining the distribution prt (xt|y) and ϵrϕ(xt, t, y)
is a very challenging task. To overcome this challenge, we approximate ϵrϕ(xt, t, y) =
ϵϕ(xt, t, y) − δϵ using the pretrained ϵϕ(xt, t, y) prediction network and Re-
ward3D. Let g(θ, c) = x ∈ R4×H×W×C denote the multiview images with contin-
uous angles spanning 360 degrees, xt = αtx+σtϵ and x̂t =

1
αt

[xt − σtϵϕ(xt, t, y)]
denote the prediction. The difference δϵ between the ϵrϕ(xt, t, y) and ϵϕ(xt, t, y)
can be calculated by:

δϵ = − ∂r(y, x̂t, c)

∂ϵϕ(xt, t, y)
= λr

∂r(y, x̂t, c)

∂g(θ, c)
, (6)

Where r stands for Reward3D, and c stands for camera. Therefore, Eq. 5 can be
reorganized as:

∇θLReward(θ) ≈ Et,ϵ,c[ω(t)(ϵϕ (xt, t, y)− λr
∂r(y, x̂t, c)

∂g(θ, c)︸ ︷︷ ︸
ϵrϕ(xt,t,y)

−ϵ)
∂g(θ, c)

∂θ
]. (7)

Eq. 4 can be reorganized as:

LReward(θ) ≈ LSDS(θ)− λrr(y, x̂t, c). (8)

5.3 Implementation Details

We use MVDream [39] as our backbone, which is capable of generating multi-
view consistent 3D assets. MVDream can align well with our multi-view op-
timization pipieline. For weighting factors, we define λr as t(LSDS, r(y, x̂t, c))
multiplied by µ, where t is a weighting function used to ensure consistency in the
magnitudes of LSDS and r(y, x̂t, c). µ increases from 0 to 0.25 throughout the
training process until reaching 0.6. Upon completion of training, we deactivate
the LSDS and solely fine-tune the 3D results for 200 steps only using r(y, x̂t, c)
with a large µ. Experimental results demonstrate that this approach enhances
the aesthetics and stability of the training process. Please refer to our supple-
mentary materials for more implementation details.

6 Experiments

In this section, we conduct extensive experiments to evaluate our text-to-3D
method DreamFL and text-to-3D evaluation model Reward3D. In Sec. 6.2, We
first present qualitative results compared with five baselines. Then we report the
quantitative results with four evaluation metrics and user studies. All of this
indicates that our DreamReward model beats the other five models and con-
forms to human preference. In Sec. 6.3, the experimental results demonstrated
the evaluating capacity of our Reward3D model in assessing the quality of 3D
assets as well as its capability in evaluating text-to-3D models, showing that
its assessment aligns with human preferences. Consequently, it can serve as a
substitute for human evaluation. Both qualitative evaluations and illustrative
examples of representative cases have been presented in this part. Please refer
to the supplementary for ablation studies.
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Fig. 2: Representative examples from our constructed 3D dataset, along with the scores
assigned by Reward3D. Reward3D gives lower scores to 3D assets deviating from the
prompt description.

Fig. 3: The utilization of Reward3D in scoring both positive examples and negative
examples (left : inconsistency, right : multi-face issue) reveals that the model can effec-
tively distinguish negative examples.

6.1 Experiment Setup

Our experiments can be divided into two parts: (1) Comparative experiments on
DreamReward Sec. 6.2, and (2) Comparative experiments on Reward3D Sec. 6.3.

In Sec. 6.2, we compare our proposed DreamReward with five baseline 3D
models: DreamFusion [33], ProlificDreamer [49], Latent-NeRF [27], MVDream
[39] , and Fantasia3D [4]. To align with the test results provided in GPTE-
val3D [51], we utilize the official implementations of each method when available.
Alternatively, we turn to threestudio’s [10] implementation. The comparative
results of the visualization are presented. Simultaneously, to obtain convincing
results, four evaluation metrics are used here: CLIP [36], GPTEval3D [51], Im-
ageReward [52], and our Reward3D. For the test dataset, we use 110 prompts
generated by GPTEval3D, consisting of prompts with varying levels of creativity
and complexity. Additionally, we conduct a user study to further demonstrate
the alignment of our method with human preferences.
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Table 1: Quantitative comparisons on 110 prompts generated by GPTEval3D
[51]. We compared our DreamReward with DreamFusion [33], ProlificDreamer [49],
Latent-NeRF [27], MVDream [39] , and Fantasia3D [4]. We calculate CLIP↑ [36],
ImageReward↑ [52], GPTEval3D ↑ [51]and Reward3D↑. Meanwhile, to demonstrate
the alignment of our trained Reward3D model with human preferences, we annotated
all generated results by researchers. The ranking results in the table below indicate a
high alignment between our Reward3D model and the annotated results.

Dataset & Model
110 Prompts from GPTEval3D [51]

Human Eval GPTEval3D Reward3D ImageReward CLIP
Rank Win Rank Score Rank Score Rank Score Rank Score

DreamFusion [33] 6 97 6 1000 6 -1.597 5 -1.489 5 0.224
Fantasia3D [4] 5 167 5 1006 5 -1.582 6 -1.521 6 0.222

ProlificDreamer [49] 4 246 4 1152 4 -0.195 4 -0.639 3 0.252
Latent-NeRF [27] 3 287 3 1173 3 -0.012 2 -0.350 2 0.257
MVDream [39] 2 375 2 1224 2 0.246 3 -0.541 4 0.243

Spearman ρ to Human Eval. - 1.00 1.00 0.80 0.60
DreamReward(Ours) 1 478 1 1480 1 2.594 1 1.833 1 0.274

In Sec. 6.3, we conduct detailed comparative experiments and user studies
on the aforementioned prompt set and 3D baselines. In the course of assessing
these models, a large amount of results indicate that our Reward3D better aligns
with human preferences compared to existing methods.

6.2 DreamFL

Qualitative Comparison. Figure 4 and Figure 5 show the 3D assets generated
by four baselines for multiple prompts, allowing for intuitive visual comparison.
We observe that the generated results using DreamFusion [33], ProlificDreamer
[49] and Magic3D [21] deviate from the text content and also suffer from multi-
face problems. While MVDream [39] can generate high-quality 3D assets with
visual consistency, its results still deviate from the given prompt content (as
indicated by the red-highlighted text). In comparison, our model can generate
3D assets that align closely with the given prompt while maintaining visual
consistency and meeting human aesthetic preferences.

Quantitative Comparison. In Table 1, we compare our DreamReward with
five baselines. It indicates that our results consistently outperform other base-
line models across multiple evaluation criteria. In Figure 6, we demonstrate that
using GPTEval3D [51], our results consistently outperform other baseline mod-
els across all 6 criteria: Text-asset alignment, 3D plausibility, Texture details,
Geometry details, Texture-geometry coherency, and overall. For the user study,
we extract 120 images from the 60-degree rotating videos rendered by threestu-
dio [10]. Each annotator randomly receives 5 sets of multi-view images gener-
ated by random methods and is asked to rate them on three aspects: multi-view
consistency, consistency between text and model, and personal preference. In
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Fig. 4: Comparison with four baselines. The results indicate that existing 3D gener-
ation models do not align well with human preferences (as highlighted in red). Con-
versely, our DreamReward results conform more closely to human preferences.

addition, they should also choose the favorite one. Finally, we collect the results
from 30 participants on 20 text prompts, as shown in Table 2 and Figure 6. In
Table 2 we observe that most users consider our results with the highest align-
ment, generation quality and second consistency. In Figure 6 we observe that
our DreamReward is preferable (65%) by the raters on average.

Ablation Study. We conduct an ablation study based on the backbone. To
verify the strength of our method, we implement our DreamFL algorithm on
the basis of the DreamFusion architecture. For a fair comparison, we chose the
same 2D diffusion model stabilityai/stable-diffsuion-2-1-base [38]. The results of
Figure 7 indicate that even for backbones with average performance, incorpo-
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Fig. 5: More generated results using our DreamReward. Our work can generate 3D
assets of higher alignment, while maintaining consistency across multiple perspectives.

rating our DreamFL algorithm can achieve better generation quality and text
alignment

6.3 Evaluation of Reward3D

Quantitative Comparison. We evaluate the capability of our Reward3D
model to determine whether it possesses judgment abilities that align with
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Fig. 6: Left: User study of the rate from volunteers’ preference for each method in
the inset pie chart, Right: Holistic evaluation using GPTEval3D. The Radar charts
report the Elo rating for each of the 6 criteria. The results indicate that our results
consistently rank first across all metrics.

Table 2: Quantitative comparisons on the alignment, quality and multi-view consis-
tency score in a user study, rated on a scale of 1-6, with higher scores indicating better
performance.

Alignment↑ Quality↑ Consistency↑ Average↑
DreamFusion [33] 2.65 1.95 2.95 2.52

Fantasia3D [4] 2.88 3.23 2.50 2.87
ProlificDreamer [49] 3.90 3.78 3.13 3.60
Latent-NeRF [27] 3.45 3.10 3.18 3.24
MVDream [39] 3.88 4.40 5.38 4.55

DreamReward(Ours) 4.88 5.03 5.30 5.07

human aesthetics. This serves to substantiate the feasibility of employing the
Reward3D model instead of human evaluation for assessing the quality of 3D
assets. The results presented in Table 1 indicate that the Reward3D model’s as-
sessments of 3D assets generated by various models are consistent with human
aesthetics, whereas ImageReward [52] and CLIP [34] are not. It is also note-
worthy that the results in Table 1 reveal that GPTEval3D’s [51](a non-feature
model using GPT-4V [1]) evaluating competency is also nearly identical to hu-
man assessments. However, in comparison to GPT-4V, our Reward3D model is
exceptionally lightweight and offers far faster inference speeds, while still retain-
ing strong evaluation abilities for 3D assets. This suggests a significant advantage
of utilizing our Reward3D model for evaluating text-to-3D models as well as for
the DreamFL method.

Representative Cases. We further present more visualization results with
representative cases. In Figure 3, We select two 3D results and replace one of
the viewpoint images with incorrect content, thus creating two negative examples
(left: inconsistency, right: multi-face issue). To ease identification, we mark the
altered viewpoint images with a red border. We observe that our Reward3D gives
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Fig. 7: Ablation study. we change the backbone of our DreamFL to DreamFusion [33]
and select stabilityai/stable-diffsuion-2-1-base [38] for 2D diffusion model. We can ob-
serve that our method still generates 3D content with higher quality and text alignment.

lower scores to negative examples. These results show that Reward3D accurately
assesses 3D content based on human preference and strong 3D awareness.

7 Conclusion

In this paper, we propose a novel text-to-3D framework called DreamReward
for human preference alignment. To the best of our knowledge, we are among
the first to utilize RLHF for 3D generation. Specifically, we first construct a
new 3D dataset annotated with human preferences consisting of 2530 prompts.
Then we train a 3D evaluation model Reward3D on this dataset to better align
with human preferences. Powered by the Reward3D model, we further introduce
our DreamFL algorithm, which achieves high-fidelity, multi-view consistent, and
faithfully human preference-aligned text-to-3D generation. Extensive quantita-
tive and qualitative experiments verify that our DreamReward framework can
generate 3D assets with strong human preference alignment.
Limitations and future work. Although our proposed DreamReward can
generate high-quality and preference-aligned 3D results, there remain require-
ments for further improvement in the diversity limited by the size of anno-
tated 3D dataset. In our future work, we will continue to optimize our Re-
ward3D on larger datasets and attempt to incorporate more cameras and ori-
entation information into the Reward3D architecture for better performance.
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A The derivation of DreamReward

In this section, we provide a more detailed derivation of DreamReward. First,
let me begin by revisiting the core assumption of this paper:

∇θLReward(θ) ≈ Et,ϵ,c

[
ω(t)

(
ϵrϕ (xt, t, y)− ϵ

) ∂g(θ, c)
∂θ

]
(9)

Where ϵrϕ (xt, t, y) denotes an ideal noise prediction network aligned with human
preference. We approximate it using Reward3D and ϵϕ (xt, t, y), as follows:

ϵrϕ (xt, t, y) = ϵϕ (xt, t, y)− δϵ (10)

The difference δϵ between the ϵrϕ(xt, t, y) and ϵϕ(xt, t, y) can be calculated by:

δϵ = −∂r(y, x̂t, c)

∂x̂t

∂x̂t

∂ϵϕ
= λ

∂r(y, x̂t, c)

∂x̂t

∂x̂t

∂x
= λ

∂r(y, x̂t, c)

∂x
(11)

Where x̂t represents the predicted x0 using xt. In Eq. 11, λ encompasses all
constant terms to ensure the equation holds. In practical implementation, we
replace λ with λr, defined as follows:

λr = t (LSDS, r (y, x̂t, c))× µ (12)

Where µ denotes a constant hyperparameter, and t represents the weighting
function. Therefore, Eq. 9 can be reorganized as:

∇θLReward(θ) ≈ Et,ϵ,c[ω(t)(ϵϕ (xt, t, y)− λr
∂r(y, x̂t, c)

∂g(θ, c)︸ ︷︷ ︸
ϵrϕ(xt,t,y)

−ϵ)
∂g(θ, c)

∂θ
]. (13)

SDS can be reorganized as:

LReward(θ) ≈ LSDS(θ)− λrr(y, x̂t, c). (14)

B Additional Implementation Details

B.1 Pseudo-code for DreamFL

A more detailed pseudo-code for DreamFL is presented in Algorithm 1.

B.2 Training Details

The time consumption for our DreamReward is 40 minutes (which is similar to
MVDream [39]). It is worth mentioning that our DreamFL can also be applied
to traditional RLHF. Specifically, by utilizing the DreamFL algorithm, a pre-
trained 3D asset can be fine-tuned in just 2 minutes. The resulting 3D asset
will exhibit finer texture details, more appealing colors, and content that better
aligns with textual descriptions.
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Algorithm 1 Pseudo-code for DreamFL
Input: Large pretrained text-to-image diffusion model ϵϕ. Reward3D model r. Learn-
ing rate η1 for 3D structures parameters. A prompt y. The weight of reward loss λr.
Evaluating threshold of noising time tthreshold.
1: initialize A 3D structure presenting with NeRF θ.
2: while not converged do
3: Randomly sample a camera pose c, 2D noise ϵ ∼ N (0, I), and timestep t ∼

Uniform({1, . . . , T}).
4: Render at pose c to get a multiview image x0 = g(θ, c) ∈ R4×H×W×C .
5: if t < tthreshold then
6: Add noise ϵ to x0 and get xt.
7: Denoise with the predicting noise x̂t =

(
xt −

√
1− ᾱtϵϕ(xt, t, y)

)
/
√
ᾱt.

8: LReward = LSDS − λrr(y, x̂t, c).
9: δϵ← λr∇g(θ,c)r

10: else
11: LReward = LSDS

12: δϵ← 0.
13: end if
14: ∇θLReward(θ) ≈ Et,ϵ,c

[
ω(t) (ϵϕ (xt, t, y)− δϵ− ϵ) ∂g(θ,c)

∂θ

]
15: θ ← θ − η∇θL.
16: end while
17: return

C Additional Experiments

In this section, we provide more visual examples to demonstrate that our Dream-
Reward is more aligned with human preferences.

C.1 More Visual Results

Figure 9, 10 presents additional comparison results with MVDream [39]. We ad-
here to the definition used in GPTEval3D [51], dividing prompts into the subject
part and the properties part (e.g., in "a sleeping cat," "cat" is the subject while
"sleeping" represents the properties). Based on experiments [39], it is observed
that MVDream [39] can effectively generate the subject part but encounters dif-
ficulties with certain more complex properties. For instance, in the "A dancing
elephant" depicted in Figure 9, MVDream [39] can depict the elephant accu-
rately but struggles to convey its dancing attribute. On the other hand, our
DreamReward can effectively overcome this issue, thus generating high-quality
3D assets that align with the properties described.

C.2 More Qualitative Comparisons

Figure 12 presents additional comparison results with DreamFusion [33], Pro-
lificDreamer [49], Magic3D [21] and MVDream [39]. These examples indicate
that the properties of the 3D assets generated by baseline models fail to align
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with the provided prompts. In contrast, our DreamReward not only ensures con-
sistency between text and 3D output but also provides results that are more in
line with human aesthetics.

C.3 More Quantitative Comparison

When evaluating the 3D assets generated by our DreamReward using GPTE-
val3D [51], we employ the latest official open-source code and run it with default
configuration settings to maintain fairness. To ensure comprehensive assessment,
we conduct evaluations through two different comparison methods: (1) compet-
ing against 13 baseline models and (2) competing solely against MVDream. We
conduct 220 and 110 inquiries/competitions respectively. The Radar charts pre-
sented in the main text are derived from the results of the first method, while
the specific ELo scores extracted from these charts are detailed in Table 3. Fol-
lowing the completion of evaluation (1), we observe that although we achieve
the best results across various metrics, there are instances of structural collapse
for certain prompts. Later, we choose a new hyperparameter λr and uniformly
regenerate 110 3D assets using this updated value. We conduct evaluation (2)
based on the new 3D assets, with the ELO scores presented in Table 4.

C.4 GPT-4V Comparison Examples

To better illustrate the higher quality of our generated results, we choose GPTE-
val3D [51] for additional pairwise comparison. As shown in Figure 11, we present
four pairs of comparison results from the tournament [51]. GPT4V [1] scores each
pair from six aspects: Text-asset alignment, 3D plausibility, Texture details, Ge-
ometry details, Texture-geometry coherence, and overall.

Table 3: The first evaluation results using GPTEval3D [51] correspond to the Radar
charts in the main text. We bold the best result and underline the second-best result.

Text-Asset
Alignment

3D-
Plausibility

Text-
Geometry
Alignment

Geometry-
Details

Texture-
Details

Overall

DreamFusion [33] 1000 1000 1000 1000 1000 1000

Fantasia3D [4] 1068 892 1006 1028 1109 934

ProlificDreamer [49] 1262 1059 1152 1181 1246 1013

Latent-NeRF [27] 1222 1145 1157 1161 1180 1179

MVDream [39] 1098 1148 1251 1256 1325 1271

Ours 1567 1305 1465 1479 1622 1442
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Table 4: The second evaluation results using GPTEval3D [51]. We bold the best result.

Text-Asset
Alignment

3D-
Plausibility

Text-
Geometry
Alignment

Geometry-
Details

Texture-
Details

Overall

MVDream [39] 779 815 810 784 780 784

Ours 1221 1185 1190 1216 1220 1216

(y,x,c))μ(?入， = t(CsDs,rl 入， = 10000

Fig. 8: More ablation study about λr, the prompt is: "A marble bust of a mouse
with its mouth open, spewing fire."

C.5 More Ablation Study

We conduct ablation study on the weight parameter λr of the reward. Figure 8
indicate that when λr is set to 0 (i.e., degenerating into a standard SDS), the
generated results only consist of subjects without properties. When λr is set to
a constant 10000, the form of the generated results tends to collapse. However,
with the application of our designed weight function t, the generated results
maintain both high quality and alignment simultaneously.
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Fig. 9: More generated results using our DreamReward
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Fig. 10: More generated results using our DreamReward
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Fig. 11: Examples of the analysis by GPTEval3D [51]
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Fig. 12: More comparisons with four baselines
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